
AFRL-RH-WP-TP-2008-0009

Implementing HCI Design Patterns
as Widget/Templates for GUI
Builders

Donald West

Consortium Research Fellows Program
Washington D.C.

Vincent Schmidt

Air Force Research Laboratory
Cognitive Systems Branch

March 2008

Interim Report

Air Force Research Laboratory
Human Effectiveness Directorate
Warfighter Interface Division
Cognitive Systems Branch
Wright-Patterson AFB OH 45433-7022

Approved for public release;
distribution is unlimited.

NOTICE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report was cleared for public release by the 88th Air Base Wing Public Affairs Office
and is available to the general public, including foreign nationals. Copies may be obtained
from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

AFRL-RH-WP-TP-2008-0009

 //SIGNED//
VINCENT A. SCHMIDT
Work Unit Manager
Cognitive Systems Branch

 //SIGNED//
DANIEL G. GODDARD
Chief, Warfighter Interface Division
Human Effectiveness Directorate
Air Force Research Laboratory

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

March 2008
2. REPORT TYPE

Conference Proceedings
3. DATES COVERED (From - To)

4.TITLE AND SUBTITLE

5a. CONTRACT NUMBER
FA8650-04-D-6405

Implementing HCI Design Patterns as Widget/Templates for
GUI Builders

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62202F

6. AUTHOR(S)

5d. PROJECT NUMBER

1Donald West, 2Vincent Schmidt

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7184HEX6
 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

1Consortium Research Fellows Program
 Washington D.C.

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
AFRL/RHCS 2Air Force Materiel Command

Air Force Research Laboratory
Human Effectiveness Directorate

11. SPONSOR/MONITOR’S REPORT

Warfighter Interface Division NUMBER(S)
Cognitive Systems Branch
Wright-Patterson AFB OH 45433-7022 AFRL-RH-WP-TP-2008-0009
12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
2008 International Conference on Software Engineering Research and Practice (SERP’08), Las Vegas, NV,
July 14-18, 2008. 88th ABW/PA cleared on 02 April, 2008, WPAFB-08-2516
 14. ABSTRACT
During the development of a software system, something is lost in translation of the Human-
Computer Interface (HCI) between human factors engineer’s analysis and the software
developer's implementation. Since the developer touches the product last, the human factors
engineer’s contribution is frequently lost. Graphical User Interface Design Patterns (UIDP)
are templates representing commonly used graphical visualizations for addressing certain HCI
issues. These patterns include substantial contributions from human factors professionals.
Using these patterns as widgets within the context of a GUI builder helps to ensure that key
human factors concepts are quickly and correctly implemented within the code of advanced
visual user interfaces. This paper introduces the concept of the UIDP and describes how this
concept can be implemented to benefit both the programmer and the end user by assisting in
the fast generation of error-free code that integrates human factors principles to fully
support the end-user’s work environment.

15. SUBJECT TERMS
Design Patterns, GUI, HCI, Widget

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Vincent A. Schmidt

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

SAR

10

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. 239.18

 i

THIS PAGE LEFT INTENTIONALLY BLANK

ii

1

Implementing HCI Design Patterns as
Widget/Templates for GUI Builders
Donald West

Consortium Research Fellows Program
Washington, D.C, USA

Vincent Schmidt
Wright-Patterson AFB, AFRL/RHCS

Dayton, OH, USA

Abstract - During the development of a software
system, something is lost in translation of the Human-
Computer Interface (HCI) between human factors
engineer’s analysis and the software developer's
implementation. Since the developer touches the
product last, the human factors engineer’s contribution
is frequently lost. Graphical User Interface Design
Patterns (UIDP) are templates representing commonly
used graphical visualizations for addressing certain
HCI issues. These patterns include substantial
contributions from human factors professionals. Using
these patterns as widgets within the context of a GUI
builder helps to ensure that key human factors concepts
are quickly and correctly implemented within the code
of advanced visual user interfaces. This paper
introduces the concept of the UIDP and describes how
this concept can be implemented to benefit both the
programmer and the end user by assisting in the fast
generation of error-free code that integrates human
factors principles to fully support the end-user’s work
environment.

Keywords: design patterns, GUI, HCI, Widget

1.0 Introduction
Early software benefited from the simple use of abstract
data types (ADTs) such as stacks, queues, and linked
lists. Even with these straightforward ideas that
enhanced the coding for more advanced machines
having improved graphics and processing power,
programmers still struggled to find ways to reliably
describe concepts frequently adopted within the core of
the code. The 1994 “Gang of Four” book Design
Patterns: Elements of Reusable Object Oriented
Software [1] took the software development community
by storm with its popular and accurate description of
frequently used software design patterns. Using the
patterns described in the book (and later, other patterns
identified by the community at large), programmers
could code reusable components with a degree of
confidence that the models were complete and
descriptive.

The design pattern concept is not new. Christopher
Alexander is frequently cited as the inspiration of
documented patterns with his 1979 book The Timeless

Way of Building that describes patterns of architectural
design [2]. Even if documented ADTs are considered as
a form of early design patterns, there is no argument
that the Gang of Four book significantly impacted the
state of the art. Along the same lines, Jenifer Tidwell
introduced a book describing design patterns as applied
to user interface design [3], in which the first chapter is
devoted to describing the relationship a user interface
should have with the end user.

Human Factors Engineers (HFEs) specialize in, among
other areas, the design of excellent user interfaces
targeted towards the end user. The traditional approach
to building computing systems is for the HFE to
generate conceptual interfaces, and then pass these
designs along to the programmers for implementation.
Unfortunately, inadequate specification and gross
miscommunication is the norm, so the well-designed
interfaces are frequently generated in such a way that
many of the elements intended to contribute to a well-
designed interface are left out of the final
implementation. The result is a new software system
that does not optimally support the end-user’s work
environment.

One solution to this problem is to have a User Interface
Design Pattern (UIDP) library that goes beyond the
mere description or specification of Graphical User
Interface patterns (GUI). (With the exception of ADT
libraries, most design pattern work currently ends with
the description of the patterns and small snippets of
sample code. This leaves implementation details up to
the programmer, introducing the strong potential for
misrepresentation of the final GUI elements.) Such a
library would include templates that can be
parameterized to generate a “90% solution” to specific
GUI elements in the design. Each one of these templates
would be vetted by HFE experts, and their use would
guarantee that human factors components are correctly
represented graphically to the end user.

Our contribution to this solution is to provide these
library components as “widgets” in a popular drag-and-
drop GUI builder. Programmers could drag these
human-factored UIDP elements into the applications
being built, and an integrated wizard would guide the
programmer through a series of tailored queries to

2

parameterize the template. The code generated by the
GUI builder would include not only the code necessary
to design the GUI’s standard widgets (pull-down menus
and button elements), but also code to generate the
specialized UIDP elements. This will result in an
application where human factors designs are not lost
due to implementation miscommunications.
Furthermore, the introduction of Human Factors into the
standardization of design patterns encourages coders to
use these pre-designed elements, since these elements
will be more user-friendly and less prone to coding
error. The details of our progress to date and anticipated
future direction are documented here.

2.0 User Interface Design Patterns
Good human factors dictates that data be portrayed in a
manner consistent with the work being performed, such
that those accessing the information be able to quickly
and easily read and understand the situation. There are
common methods for visualizing certain types of data,
where minor alterations in the visual display can be
performed to suit a wide variety of situations and
software applications. These visualizations are called
User Interface Design Patterns, and they represent a
class of repeatable, general solutions to commonly
occurring end-user display needs.

As new user-interface design patterns are discovered,
they can be documented in a design pattern library.
This library can serve as a foundation to all user
interface creation, much as Erich Gamma’s [1]
documentation of elements did for the creation of
object-oriented software. A good pattern library would
include a list of the patterns, a description and formal
specification for each pattern, sample pattern usage
code, and a reusable template.

Pattern software objects can be made with good human
factors design already implemented, effectively
representing a “90% solution” to a programmer’s
visualization requirements. The key benefit to such
patterns is that high-quality code with built-in human
factors design is available to the coder to support rapid
software implementation. The resulting application will
be well-suited to the user, meeting good human factors
design criteria. (Coders are not traditionally trained in
human factors sciences, so many of their interfaces
poorly support the user or the work environment.)

The subsections that follow describe the user interface
design pattern concepts by way of example. The Map
and Timeline patterns are used within our own
organization as custom-coded components, but we are
working to show how they can be used by a wider
audience using a general software development

framework.

2.1 Map Pattern

The Map pattern is useful for displaying spatial
information as layers of imagery, symbols, and
corresponding text. As the name suggests, this pattern is
found primarily in maps and mapping software. Since
geographic paper and electronic maps are commonly
used, most people are already familiar with the map
concept.

In general, maps are frequently used for driving
directions and road map scenarios. However, this
pattern could also be used in a wide variety of other
scenarios: creating a weather map for a new area,
mapping underground tunnels, visualizing something as
small as a microchip and schematic diagrams, or
displaying something as large as the night sky.

Figure 1. Google Maps Example [4]

The map pattern can be implemented as a widget that is
a collection of layered images and corresponding text,
along with extra control options and map legend data.
The example shown in Figure 1 could easily be created
with two layers. The first would be a base layer
consisting of a picture of the area. The second would be
a drawn image of roads that coincides with the base
layer’s picture.

Each layer could have a collection of related attributes
and controls, such as:

• Image
• Opacity
• Vertical Pan
• Horizontal Pan
• Vertical Wrap
• Horizontal Wrap
• Zoom qualities
• Zoom rate
• Toggle on/off

These characteristics might be explicitly coded into the
map implementation by the programmer, or they may be

3

configurable in real time by the user at the user-
interface level.

As an additional example, the map pattern could portray
a floor plan for an entire multi-floor building (Figure 2).
The pattern is instantiated by adding a layer for each
floor and controlling layer opacity. Clearly, the map is
a good pattern because of its ability to be reused in a
multitude of situations.

Figure 2. Floor Plan Concept

The map pattern could be implemented as a template
that is instantiated within a GUI builder. When the
programmer adds the map widget to the display, a
wizard guides the GUI designer through a series of
decisions to fill out the code template. The map’s layer
concept is represented by providing the GUI designer an
opportunity to continue to add new layers until all
desired layers have been described. For each layer the
user adds, the wizard provides a series of options and
attributes that can be selected for this layer, and
indicates how the layer relates to other layers. (For
example, should opacity be defined by the programmer,
or should the end-user be able to change opacity
dynamically for this layer? Should this layer be
registered to pan and zoom independently, or tied
explicitly to the corresponding values of other specified
layers?) The wizard also allows the layers to be
prioritized, stacked, and placed as a cohesive unit.
While there are only a few attributes, adjusting them can
lead to an optimized “map” for a vast number of
different uses.

Suppose there is a need to display weather information
on the map shown in Figure 1. By adding a layer
containing a dynamic image of a Doppler readout,
giving this new layer a high priority (or top location on
a visible stack), and changing it’s opacity to 50%,
clouds and precipitation would be shown along with the
referenced geographic data. This layer could also be
deselected so it is not displayed. Clearly, the layers need
to be able to display both static and dynamic
information, as well as textual and symbolic data. The

map pattern template must provide a mechanism for
these displays.

Some characteristics certainly need to be determined by
the programmer. The map pattern template should
provide code providing these decision points and
implementing the capabilities required. Navigation and
perspective are prime examples. Additional navigation
options may be necessary when an image becomes too
large for the screen. This is where the pan, zoom, and
horizontal and vertical wrap attributes come into play. A
programmer may add a slider for measurements that do
not pan with the other layers (such as distance or angle
overlays and other “heads-up display” information).
Similarly, a programmer may require layers to pan at
different rates (perhaps to approximate differences in
distance between successive layers; a rotatable first
person perspective and pan is similar to rotating the
point of view, so closer objects will pan more slowly
than farther objects).

Another interesting map pattern usage is zoom
capability. The programmer will need to decide if the
user has a requirement to zoom into the image of layers,
or zoom from one layer to another, or both. If the
programmer makes interactive blueprints for an office
building as shown in Figure 2, then it may be desired for
the zoom function to go up or down one floor, whereas
the Google Maps application zooms into the layer
images until the image quality cannot be maintained,
then switches to another layer.

The map pattern is common and versatile, and its many
implementation characteristics make it a clear candidate
for incorporation into a user interface design pattern
library. This discussion treats the map pattern as a two-
dimensional pattern; it is unclear at this time if it is a
good idea to directly extend the map pattern into a 3-D
(or other multi-dimensional) pattern, or if such usages
should eventually be implemented independently.

2.2 Timeline Pattern

Timelines are an integral part of today’s professional
world, whether project management, corporate
planning, military missions, or even just trying to
reserve room C-3 down the hall for a conference next
Tuesday. This pattern is hidden everywhere in our daily
lives as well, and can be seen whenever we look at a
calendar or make an entry in our PDAs. At its simplest,
a timeline pattern is nothing more than a standard way
of visualizing time along with constraints and
obligations. Incorporation of human factors
considerations into the implementation adds tremendous
value to the timeline pattern as a software component.

The timeline pattern shows linear time using a

4

collection of simple numberline-like graphs: lines and
points correspond to important moments or time spans.
Dependent timelines can be used in conjunction with
each other to account for objects, people, or events that
mutually constrain the same time periods. Consider a
scenario where you want to set up an office recognition
party for Jim during business hours. The facility has
three conference rooms suitable for the event, but they
are intermittently reserved for meetings. The party is
expected to last an hour and a half. Bob and Dave,
Jim’s best friends, must also be able to attend. Jim, Bob,
and Dave all have various daily commitments, and Jim
has to oversee the activation of the Jumbo-tron at 3 p.m.
each day.

There are several ways someone could deal with
scheduling Jim’s party with this information. They
could try to “think it through” in their head, but this
grows increasingly difficult with each new constraint or
additional piece of information. The data could be
placed in an electronic spreadsheet, but this format is
often sloppy, complex, prone to error, and could take a
long time to analyze when cross-referencing all the data.
This type of data could be easily visualized with a
timeline, such as in the example of Figure 3.

Figure 3. Jim's Party

The timeline formats all the data into an easy-to-
comprehend view that doesn’t require manually
incorporating constraint cross-references as in an Excel
spreadsheet.

The basis of this pattern is a simple linear reference
timeline, shown by the notched line labeled from “8” to
“5” in Figure 3. This base timeline will act as the point
of reference for all related timelines. Each labeled row
(shown below the reference timeline) contains a visual

representation of the relationships and constraints of a
specific activity to the reference timeline. These
activities could also be related to (or constrained by)
one-another.

Within these rows, there are three separate markers to
identify important points or tracts of time:

1) Lines: These generally signify the primary
information of an informative line.

2) Points: These signify an instantaneous action,
restriction, or event.

3) Backgrounds: These are similar to lines,
however they are placed behind lines and point
to better use them in conjunction with the other
two markers. Backgrounds are generally used
to identify an acceptable period of performance
for a desired action.

Lines, points and backgrounds can have constraints
placed upon or between them among the timeline’s
rows. In Figure 3 the constraints can easily be seen; all
people must be available, and at least one conference
room must be available for an hour and a half period.
As more informative lines are added and constraints
grow more complicated, it will be necessary to let a
computer keep track of the constraints. This is where a
Timeline pattern becomes even more useful.

Just as with the Map pattern, the Timeline pattern
involves pre-implemented human factors design. By
progressing through a wizard, a programmer can easily
create a base timeline, informative corresponding rows,
and constraints amongst them to match any scheduling
or planning needs.

Further aspects of the Timeline allows for tooltips. This
enables detailed, relevant, contextual information of a
line or object to be displayed by hovering over the
object with the mouse. Tooltips provide easy access to
contextual information without confusing the user and
cluttering the screen when the information is not
needed.

In addition to the look, feel, and functionality timeline
features, a simulation mode can also be easily added.
The simulation mode allows the user to graphically
move lines and points (time constraints) without
changing the actual configuration of the timelines. This
capability allows the user to rearrange obligations and
experiment with timeline configurations without
impacting the actual data. The programmer is
responsible for specifying the lines, points, and
variables that can be moved, as well defining any
restriction upon moving these objects. The simulation

5

mode also implements warning to indicate broken
relationship constraints.

Figure 4. Timeline Tool Application

A Timeline pattern can be used to represent immense
and complicated temporal relationships for extremely
complicated scheduling tasks. The United States Air
Force intends to use timeline patterns for important
coordination of aircraft, flights, and refueling. The
timeline pattern described in this section is a
parameterized template based on a custom-coded
Timeline Tool application (see Figure 4) being
developed within the Air Force Research Laboratory.
Our goal is to implement the timeline pattern such that
the Timeline Tool could be created using the Timeline
pattern wizard.

3.0 Implementation Decisions
Having defined these design patterns, a method of
implementing them must be found. Our desire is to
implement UIDP objects as drag-and-drop widgets
within an existing GUI builder framework.

Implementation platform decisions are largely guided
by our selection of the target programming language
(i.e. Java, C++, Python, Perl, etc.). The list of potential

languages to be used narrowed by our needs: we must
be able to create visual objects that are easily
manipulated by the typical programmer. The most
commonly known object oriented, visually effective
languages include Java, C++, and Visual Basic.

Java was selected as the language of choice because:

1) Contemporary programmers are being trained
primarily in Java.

2) Many projects used within our organization and
by our customers are coded in Java.

3) Java code is platform independent, meaning it can
be used on any computer architecture with a JVM.

Once the computing language is chosen, the next step is
to choose an integrated development environment
(IDE). Not only does an IDE provide us (the pattern
implementers) an easy, consistent coding environment
by highlighting Java syntax, properly indenting lines,
providing real time syntax checking, offering debugging
tools, and providing a compiler, it also serves as the
baseline for the GUI builder.

The selected IDE must support a GUI builder for Java,
be extensible, and be relatively inexpensive (if not free).
An extensible GUI builder is required, as these are
visual design patterns that we are attempting to create.
Extensibility is vital towards allowing us to incorporate
extensions for our new pattern widgets when they are
created.

As long as the GUI builder is a technologically sound
product, low GUI builder cost will encourage frequent
use of our patterns within the community at large. The
cost of the IDE is also a convenience for us as
implementers. If the IDE is free, that also takes a burden
off from the end-user as they will be able to use these
widgets without dipping into their wallets, or filing
corporate purchase requisitions.

Table 1. Ranked Compilation of Java GUI Builders for Eclipse [5]
Name Source Price Extensible? Comments

Eclipse Visual
Editor Platform

http://www.eclipse.org/vep/WebConte
nt/main.php

Free Yes MAC OSX not supported

Cloudgarden’s
Jigloo

SWT/Swing GUI
Builder

http://www.eclipse-
plugins.info/eclipse/plugin_details.jsp?

id=472

Free Highly Customizable Good reviews, but
extensibility is not clearly

defined.

SWT Designer http://www.swt-designer.com Commercial
License - $299

Yes Restricted trial version
available

Eclipse GUI
Builder 2.2

http://eclipseplugincentral.com/Web_L
inkes-index-reg-viewlink-cid-783.html

Free Extendable Libraries Has potential

Jvider http://www.jvider.com Single License -
$69

Unclear, but suspect no. Only usable on outdated
Eclipse version

V4ALL http://v4all.sourceforge.net/index_start.
html

Free Poor Documentation,
unknown.

Shoddy documentation.
Seems unprofessional

Matisse for
Eclipse

unknown unknown unknown Could only find negative
review articles. Couldn’t
even find a website for it.

http://www.eclipse.org/vep/WebContent/main.php�
http://www.eclipse.org/vep/WebContent/main.php�
http://www.eclipse-plugins.info/eclipse/plugin_details.jsp?id=472�
http://www.eclipse-plugins.info/eclipse/plugin_details.jsp?id=472�
http://www.eclipse-plugins.info/eclipse/plugin_details.jsp?id=472�
http://www.swt-designer.com/�
http://eclipseplugincentral.com/Web_Linkes-index-reg-viewlink-cid-783.html�
http://eclipseplugincentral.com/Web_Linkes-index-reg-viewlink-cid-783.html�
http://www.jvider.com/�
http://v4all.sourceforge.net/index_start.html�
http://v4all.sourceforge.net/index_start.html�

6

The most commonly used IDEs that are suitable for our
needs include Sun Microsystems’ Netbeans and the
Eclipse Foundation’s Eclipse IDE. Both Netbeans and
Eclipse are free, extensible, and commonly used in the
Java coding world. Eclipse was chosen because many
of our own staff and customers are already familiar with
this environment.

Eclipse offers a Java programming environment with
very customizable windows and views. On top of its
default customizable design, a user can download or
create extensions and attachments for nearly every
aspect of the IDE. This extensibility allows us to search
through a wide variety of GUI builder plug-ins for
Eclipse. Using the same criteria as for the IDE we
compiled a list of seven possible GUI Builders and
ranked them according to cost and extensibility.
Ranked from best to worst, they are shown in Table 1.

Visual Editor was chosen for its clear extensibility and
free cost. Cloudgarden’s Jigloo was a close second.
Unfortunately, its extensibility could not be fully
determined without downloading and testing the
software. With our own software installation approval
process to go through, and limited time, it seemed
prudent to use Visual Editor, which is already available
and approved for use. (SWT Designer and Jvider were
not explicitly tested due to the additional costs. V4All
and Matisse for Eclipse may be good GUI Builders, but
not enough information was readily available, so they
were also dismissed.)

4.0 Design Architecture
Implementation of the UIDP concept is currently in the
design and initial implementation phase, using Visual
Editor as a baseline. Visual Editor is an easy to use
Eclipse-based drag and drop GUI Builder which keeps
manual GUI coding to a minimum. The Eclipse Visual
Editor Platform allows for round-trip engineering:
visual modifications are reflected immediately in the
code, and code changes are displayed visually. Visual
Editor also contains the fundamental Java widgets for
graphical user interfaces such as buttons, scrolls bars,
text boxes, check boxes, and radio buttons.

Our goal is to use Visual Editor to create UIDP tools as
widgets to be placed in its existing library of widgets
(Figure 5). These tools can then be used in a drag and
drop fashion along with the IDE’s pre-existing widgets.
With the addition of a wizard to these new widgets, a
fully customized high level pattern could be
implemented in a matter of minutes.

Developers

Eclipse

Visual Editor
GUIBuilder

Timeline
Tool
Map
Tool

Widget Library
Our Contribution

Existing Widgets

 Figure 5. UIDP Implementation Architecture

Our rationale is that since GUI-based software is
frequently built using GUI-builder tools, it seems
reasonable to extend these drag-and-drop interfaces to
include a collection of “super widgets” that implement
the User Interface Design Pattern concepts. The coder
would use these UIDP elements within the GUI builder
just like the common widget set. UIDP elements
themselves will be stored in a local library of coding
templates. When the UIDP element is selected and
placed on the display, a wizard will guide the
programmer through a series of selections that
instantiate the templates based on the desired
characteristics.

The GUI builder will save the UIDP code along with all
other generated code. Wizard selections should be saved
(as XML, for example) so UIDP instantiation choices
can be revised if needed. This information might be
saved as an additional file, or it may be saved as
comments within the generated code.

 Implementation of the UIDP “widget set” within Visual
Editor is module-based. The UIDP capability can be
loaded into Eclipse as an additional module extension to
the Visual Editor modules. We are currently
concentrating on developing an understanding of how to
interoperate with Visual Editor, including determining
how to add new visual elements and how to generate
code within this environment. Our final loadable
module product is expected to be uploaded for use by
the entire Visual Editor community.

All widgets within the UIDP module will already be
vetted by human factors experts. These experts will be
heavily involved in the design and evaluation of UIDP
components. As coders who work closely with human
factors engineers, we are somewhat uniquely qualified

7

to produce the UIDP elements for this library in such a
way that the instantiated and generated library code
results in visualizations with built-in human factors
considerations that support the end-user’s work
environment and needs.

5.0 Conclusion
Efficient and effective software design is the grail
sought by software professionals and technologists
worldwide. Incremental steps are continually being
made toward this objective: more accurate computing
paradigms and information theory, specialized
computing languages, and more capable and more
complex software libraries. Together, these enable
programmers to generate and maintain software systems
faster, with likelihood of fewer bugs, and with greater
flexibility than ever before.

A user-interface design pattern library is the next
evolutionary step in software libraries. With design
pattern tools such as the map tool and timeline tool, an
easier method of implementing these documented
patterns is formed, than with a small description of a
pattern and a snippet of code. Instead, an interactive
template will guide the creator to produce the desired
user-interface with minimal errors, and a Human
Factors Engineering component is already included in
the code templates.

The implementation architecture is simply an effort to
create a proof of concept for User Interface Design
Patterns, and these preliminary implementation efforts
are still subject to change. Even as this paper was being
written, our research has uncovered a potential new
method for pattern implementation, based on the Glade
User Interface Builder. Glade seems to have the
potential to build and add new widgets quickly and
easily while allowing these additions to be language
independent through the use of XML.

The development and documentation of User Interface
Design Patterns has the potential to decrease build time,
and increase product quality, reduce programming
errors, and improve coding efficiency. Most of all,
though, use of these patterns at the coding and design
levels will improve the user experience, since these
design patterns include a human factors component that
supports the ability of the end-users to complete the
work.

5.0 References
 [1] Gamma, Erich, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software

[2] Alexander, Christopher.

. 1st ed. Reading, MA:
Addison-Wesley, 1994.

The Timeless Way of
Building

[3] Tidwell, Jenifer.

. 1st ed. Oxford: Oxford University Press,
1979.

Designing Interfaces: Patterns for
effective Interaction Design

 [4] "Google Maps."

. 1st ed. Sebastopol, CA:
O'Reilly Media Inc., 2005.

Google

 [5] Stuart, Mitch. "Java GUI Builders."

. 07 February 2008. Google.
7 Feb 2008 <http://maps.google.com/>.

fullspan. 06
April 2005. fullspan. 7 Feb 2008
<http://www.fullspan.com/articles/java-gui-
builders.html>.

 8

	1.0 Introduction
	2.0 User Interface Design Patterns
	2.1 Map Pattern
	2.2 Timeline Pattern

	3.0 Implementation Decisions
	4.0 Design Architecture
	5.0 Conclusion
	5.0 References

